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ABSTRACT

The Biot-Tolstoy (B-T) exact impulse solution of diffrac-

tion by an infinite half-plane is compared to the usual

Helmholtz-Kirchhof f (H-K) integral formulation and to the exact

continuous wave (CW) solution of Macdonald. For backscatter

the B-T and H-K solutions are found to differ significantly,

especially near the surface of the half-plane, where the B-T

solution gives close agreement with experiment. For forward

scatter the two exact solutions and experimental data are in

agreement. B-T is found to agree well with measurements of

diffraction by a barrier perpendicular to a rigid base. By

considering source and source image in the base separately the

concept of "image of the source in the barrier" is found to be

unnecessary. Use of the time domain form of the B-T solution

in calculating the forward diffraction near a corner and be-

hind a thin strip is shown to give results which agree well

with measured data. Secondary diffraction effects are ob-

served in the measurements of diffraction by a thin strip, a

non-vertical barrier and a thick edge.
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I. INTRODUCTION

Many practical problems in acoustics are complicated by

the presence of boundaries which influence the sound field

in some way. When the direct path between source and receiver

is not obstructed, these boundaries represent a perturbation

to the free field solution. If the boundaries are infinite

in extent, the image or normal mode methods are often applied.

Finite boundaries introduce the additional phenomenon of

diffraction or scattering, which is often treated as an

additional perturbation to the free- field plus reflection

solution. When the finite boundary is such that it blocks

the direct path the problem is somewhat different.

In this case, the only sound reaching the receiver is

that which has been diffracted at the edge of the finite

boundary (assuming the boundary to be rigid) . In terms of

airborne noise control a finite boundary that blocks the

direct path is often called a barrier or screen. When a

similar technique is applied to the reduction of unwanted

sound in a shipboard sonar system, the boundary is generally

called a baffle. The location and size of baffles on sub-

arines and surface ships are severely constrained by the

size of the ships themselves. As a result, the baffle is

often close to the radiating source and the receivers close

to the baffle. Care must be used in selecting a theoretical
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approach to solving the diffraction problem under these cir-

cumstances since some of the techniques in general use involve

simplifying assumptions which may not be valid under these

rigorous conditions.

Much work on the solution to the barrier problem may be

found in the noise control literature. In this paper, two

solutions used in noise control are examined, along with the

little known solution by Biot and Tolstoy, and the theoreti-

cal results are compared. In addition, experimental results

relating to the application of theoretical solutions to

finite barriers are presented.





II. THEORETICAL APPROACH

A. GENERAL

The usual approach to solving the problem of diffraction

by a plate or barrier is to approximate the barrier mathe-

matically as an infinitely thin, opaque, half-plane. This

problem was first solved by Sommerfeld [Ref. 1] for plane

continuous waves and then by Carslaw [Ref. 2] for spherical

continuous waves. Macdonald's [Ref. 3] work for spherical

continuous waves is often referenced as the rigorous solu-

tion to diffraction by a wedge (and hence the half-plane)

.

In 1957 Biot and Tolstoy [Ref. 4] published their exact

impulse solution using the normal coordinate formulation.

Despite the fact that the Biot-Tolstoy impulse solution is

in closed form and contains only simple functions, many

authors in the noise reduction field still consider Macdonald

as the only exact solution [Ref. 5].

A second general approach to the problem is Kirchhoff's

approximate solution to the integral equation formulation

of Huygens • Princiule. This approach has been used exten-

sively in both optics and acoustics and can be shown to give

reasonable agreement with observed results, within certain

limits , in spite of the fact that the basic simplifying

assumptions are generally acknowledged to be incorrect

[Ref. 6].





There are additional approaches to this problem that will

not be explored here. A good summary of the various solutions

in the context of the noise control barrier can be found in

Reference 5.

Rigorous derivation of the three theories will not be

attempted, however the development of each will be summarized

in order that basic differences can be understood.

B. BIOT-TOLSTOY FORMULATION

M.A. Biot and I. Tolstoy published their landmark paper

[Ref. 4] on the normal coordinate approach to wave propagation

in infinite media in 1957. Within this paper was an applica-

tion of the normal coordinate approach in solving the problem

of diffraction from an infinite wedge which forms the basis

for the theoretical results in this paper. The important

features of their work in the present application are as

follows

:

a. The solution is exact and in closed form.

b. The solution can be expressed in elementary functions.

c. The use of an impulse source provides insight into
the contributions from various edges and a means of
separating the diffracted from reflected and direct
components

.

The extension of their results to other types of sources is

straightforward.

The normal coordinate approach is related to the normal

mode description in acoustics which is most often encountered
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in the solution of problems where the medium is bounded such

as room acoustics, shallow water sound propagation, and

speaker enclosures. In these cases the normal coordinates

are the allowable modes of vibration (normal modes) of the

system. The overall response of the system is the super-

position of these discrete normal modes. Stated another way,

an external source excites all modes at various amplitudes

and phases and the solution then is the coherent sum of all

these individual excitations. The essence of the normal

coordinate approach to the solution of general diffraction

problems is the extension of the principle of superposition

of normal modes to infinite media. As the boundaries of the

"enclosure" are removed toward infinity the spacing between

normal modes becomes progressively less, with the limit

being a continuous response spectrum with the boundaries at

infinity. If we now introduce a source which "turns on" at

time t = (a transient source) , the solution contains only

waves traveling outward and no radiation condition need be

imposed. The solution summarized here is taken primarily

from Reference 7.

In order to formulate the problem of diffraction by a

wedge, a cylindrical coordinate system is chosen with the

origin at the wedge crest and the z-axis along the crest as

shown in Figure 1. In this system the acoustic wave equation,

in terms of displacement potential (}> , is written as

11
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e^o

''igure 1, General Infinite edge Diffraction Coordinate

System,
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il^ + i ii + ^ 3^ + ill _1 9_i = riT 1^

By separation of variables the harmonic solutions are

CD = e-i^^H/^'^^(Kr) e'^^^-i^^^ (II-2)

where the separation constants are related by

2
2 LO 2 1 WY=:::^-^, k = -

c2 c

Applying the boundary conditions for a rigid wedge,

11= ; 9 = 0, 9 = e^

restricting the amplitude to be finite at r =
, and choosing

a location for our point source (r=r,6=9,z=0) that^

will result in z-axis symmetry, the solution is written as

(b = J (hcrlcosv 6 cosy ze""'"'^ (II-3a)
^n V ^ ^ n ' n ^ '

n

w

The solution can be separated into space-dependent and

time dependent parts,

(^ = q ijj (II-4a)
^n ^n n

^1) = J (K:r)cosv 9cosyz (II-4b)
^n V ^ n

n

The q are the normal coordinates which satisfy the
^n

differential equation

q + oj^q = — (II-5)
^n ^n u

n

13





here Q„ is the generalized source function and u is pro-n ° n ^

portional to the kinetic energy in each mode. The series

represented by (II -4) is known to be orthogonal and may be

normalized bv the condition

ew
u = pn ^ de

+00

d: (VJj )^r dr

The medium is infinite in the r and z directions resulting

in divergent integrals. These are handled by Tolstoy using

a symbolic limiting procedure (discussed in detail in Re-

ference 7, section 8-2) resulting in the following expression

u CO 7T

n 2 ""w c2 ^dicdy
(II-6)

It is at this point that we must choose an appropriate form

for the generalized source, .

The usual approach (and the one which we will ultimately

use) is to choose the delta function or unit impulse source.

It has two distinct advantages over other forms. First, it

will result in a solution identical to that achieved via the

Green's function approach, at least for those modes which are

physically realizable. Second, it provides a simple building

block with which the solution for other source forms can be

constructed through the application of Duhamel's theorem.

The result is analogous to analysis of electronic filters:

the response of the system to a unit impulse input is the

14





system impulse response. The system transfer function is

the Fourier transform of this impulse response.

Biot and Tolstoy choose the source such that the displace

ment potential at a distance R is of the form

where l(t - /C) is the unit step function having the value

zero for (t- /C)<0 and one for (t- /c)>0. This represents

the instantaneous injection of a unit volume at the source

coordinates and is commonly used as a mathematical approxima-

tion to an explosion. Since the pressure and displacement

are related by

2

9T2p = - P^ (II-8)

the pressure at a distance R due to the source function of

Equation (II -8) will be

However, Medwin [Ref. 8] derives the solution for an impulse

source directly from Biot-Tolstoy by simply taking the pres-

sure to be proportional to the Biot-Tolstoy expression for

particle velocity, since the two source functions differ by

a first derivative. Medwin shows that this is equivalent to

assuming a point source of strength S (volume per time) which

flows uniformly beginning at time t = 0. The acoustic

pressure at range R due to this source is given by

15





Q = - Xl(-t) [V^i^ ] (11-10)

where X is the bulk modulus of the fluid, and i|; is the space

dependent solution for the free modes (,Equation II -4). The

Lapacian of 'p , in brackets, is evaluated at the location of
n

the source. Substituting (II -4) into (11-10) and utilizing

(I I -6), the differential E quation (II -5) can be written as

n2
Q + 03 q^n ^n 7T0

l(-t) J (Kr )cosv 6 Kdicdy
V o n o

(11-11)
w n

The solution to (11-11) represents the normal coordinates for

the problem,

'n

cos cot 2C^ r r,. ^ n J a. ^^n^— J (Kr )cosv 6 icdicdy t>0
2 Tre v^ o' no '

-
oj w n

(11-12)

Substituting into (II -4a) and taking the time derivative, the

solution can be written as

9t
2C
770

y cosv 9 cosv
l- n

w n
n n o

il
J (xr) J (k r ) cosy z X
V V
n n

sin ojt

0)

Kdicdy (11-13)

Equation (11-13) represents an exact solution to the

perturbation of a propagating wave by the presence of a

rigid wedge, assuming Equation (11-10) as the form of the

source. Its present form is not particularly useful, how-

ever the application of two known integral transforms to

Equation (11-13) reveals its simplicity and its close re-

lationship to the physical problem in an intuitively

16





satisfying way. The application of these transforms is

discussed next.

Equation (11-13) contains integrals with respect to both

the z-axis wavenumber y and the radial wavenumber <. Con-

sidering the integration over y first,

rsm wt J 1cosyz dy = —
2 c

cosyz
sin ct(y^^H^^)^

^^ ^^^_^^^

and the relationship of the separation constants

The integral on the RHS of Equation (II -14) represents a

known integral transform, as follows [Ref. 7]:

2^ 2 ^ ^
2 -I. 2 , 2 >i

'2 •

:osYZ
sin ct (y ^ < ) ^ w [^ ^^.^ ^ ., z^

.^ ^^^

= ct<z
(11-15)

The existance of two distinct forms of the solution, one of

which is zero, is a direct consequence of the choice of a

transient source, i.e. if the source is turned on at t =

there can be no effect at the receiver until a time equal to

the source/receiver separation distance divided by the pro-

pagation speed. In this case, z is one component of that

separation vector.

Using the result of (11-15) the remaining integral of

(II -13) may be written as

17





n
J (^r)J (Kr 1 J [K (cH^-z^) ']Kc<VVO'O '

n n
(11-16)

This integral has a known solution which takes on three

different forms depending upon the relationship of the

variables r, r , and (c^t^- z^)'^. Tolstoy [Ref. 7] defines

these three regions in terms of the propagation time of a

pulse emitted by the source at t = . The time of arrival

(at the receiver) of the earlist possible direct pulse is

given by
^^2

t. = ^[(r-r )^ - z^]
1 c -

' o-

The earliest time of arrival of the pulse which has traveled

from source to receiver via the crest of the wedge is

T = i[(r * r y * zM^''-
c o

With these new variables, the three regions of the solution

are given by

I.

II.

t <t

t <t<T
1

I =
n (11-17)

-

1

I = (Trrr sinX) cosv Xno n

X = arcos
r^ + r ' + z^- c't'

2rr

0<X<rT

(11-18)

III,
_ 1 -V Y

T <t I = - r-frrr sinh Y) sin(v tt) e n
n ^ o ^ n

Y = ar^cosh
^2^2 _ (-^2 ^ ^ 2 ^ ,2^

o

2rr

(11-19)





These three regions have a strong intuitive foundation.

In Case I. it is obvious that a pulse transmitted by the

source cannot be received until a finite time has elapsed,

that time being equal to the separation divided by the pro-

pagation speed. Case II. represents that time during which

reflections from the face of the wedge are received. Tolstoy

[Ref. 7] shows that when this expression for I is substituted^ n

into Equation (11-13), the solution takes the form of images

of the source in the reflecting wall. Finally, Case III . is

the diffracted wave. It is characterized by an arrival time

which is later than the last possible image source arrival,

as seen from Figure 1.

The same results can also be interpreted geometrically,

as discussed by Watson [Ref. 9]. I f we rename the variables

r, r , and (c^t^-z^)^ in (11-16) as b, c, and a, respectively,

Watson points out that the three regions of the solution can

be described in terms of the geometry of Figure 2 (z is taken

to be zero for simplicity). The solution of Case II. applies

whenever the value of side a is such that a triangle can be

formed having sides a, b, c. It is obvious that this will

be the case whenever a has the values

(b-c)<a< (b+c)

and, from the law of cosines, the angle A will be given by

1^2+ 2_ 2

A = arccos ^-X^—- (11-20)
Zbc

where A can take on values between o and it. The comparison

with Equation (11-18) is immediate. In Case III., a is

19





Figure 2. Source, Eeceiver, and Wedge Crest Geometry,
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greater than (b + c) , the angle A becomes imaginary, and the

expression corresponding to (11-20) must come from hyperbolic

trigonometry

:

„2 u2_ 2

A = argcosh
^^^ (11-21)

It can be seen from this discussion that the Biot-Tolstoy

formulation in the time domain decomposes into direct/reflec-

ted and diffracted components in an intuitively satisfying

way. This is apparently due to the use of the normal coor-

dinate formulation, which considers only modes which are

physically realizable, and the choice of the transient form

of the source. However, because of this distinct division

between direct and diffracted solutions, considerable care

must be exercised when working with a geometry where the

arrival times of the direct and diffracted waves are close,

such as near the boundary between the "illuminated" region

and the geometric shadow.

To arrive at the final solution for the diffracted wave,

the result of Equation (11-19) is applied to the general

solution (11-13) as follows:

;r-±- = —r— (rr slnh Y) 7 cosv 9 cosv 9 sinv ire n
3t Tr9^/ '

^io n n n

V = 5^ (11-22)
n 9w

Expressing the sum in terms of exponentials, regrouping, and

collecting in conjugate pairs, the solution can be written

in exact, closed form as

21





w
^w^^e r!l_r^ + Q + o ^^4.^ ^wl-2e ^^cos(^(7T±9±9 ))+e

9 w

(II-23a)

Y = argcosh .^^ 5 (II-23b)

where the term (7r±9±9g) indicates that the entire expression

within the curly brackets is the sum of four terms , each of

which corresponds to a unique combination of (1119190).

Recalling the discussion concerning the forms of the

impulse source, Equation (11-23) can now be used in place of

the second partial derivative in (II -8) and the solution of

the diffracted wave in terms of pressure can be written as

ttY

9 ,y

^^9 ^ ° ^^ ^

' ^'"

(11-24)
p(t) = - £^l_[rr^ sinh Y) "

e ^'-^^'Csl

w

where Y is given by Equation (II -23b) and 6 represents the

term in curly brackets in Equation (II -23a).

Equation (11-24) represents the diffracted pressure as a

function of time due to a unit impulse source. To within a

constant representing the source strength, this is analogous

to the impulse response, h(t), of a general linear system.

This impulse response is often Fourier transformed to obtain

the transfer function H(w) and examined in the frequency

domain. Since there is no known analytical transform of

22





o£ Equation (11-24), the numerical technique of computing the

impulse response in discrete time steps and then transforming

using the Fast Fourier Transform (FFT) is employed. To avoid

the problem of infinite values of h(t) for the earliest

diffracted arrival, Medwin uses an approach which computes

the first time point by a numerical integration. All of the

Biot-Tolstoy theoretical results presented in this paper are

calculated in this way.

C. HELMHOLTZ-KIRCHHOFF F0R!4ULATI0N

The Helmholtz -K irchhof f formulation is a mathematical

statement of the heuristic description of wave propagation

due to Huygens . Simply stated, a source at some distance

from the surface (in this case a plate which has one straight

edge and extends to infinity in three directions) insonifies

all points on the surface S. Each small area element, ds

,

on the surface then acts as apoint source of spherical waves.

At some observation point Q , the acoustic field is due to the

incoming waves from the source directly plus the sum of the

contributions from all of the point sources on the surface.

Neglecting the effect of the direct incoming waves at , the

field can be determined by integrating over the surface. To

construct an exact solution in this manner one would have

to know the amplitude and phase of each point "source" on

the surface. This not possible, in general, and therefore

the Kirchhoff approximation is used. The brief development

23





given herein follows that in Clay and Medwin [Ref. 10]. A

detailed derivation can be found in most optics texts and

in a book by Baker and Copson [Ref. 6]

.

From Green's theorem, assuming a source of time dependence

e , the filed at the observation point Q can be expressed

as

U^Q^ = 47
[u|-("

ikR

3n' R
(II -25)

where R is the distance from each element ds to the observa-
-ikR

tion point Q and —^— is the free space Green's function.

That the integrand is evaluated on the surface is denoted

by the subscript s on the brackets. This known as the

Helmholtz -Kirchhof f integral. It describes the relationship

of the field at Q to the field on S, but the problem of

evaluating the field on S is not yet resolved.

Equation (11-25) can be used to evaluate the diffracted

wave field on either side of the surface. Our primary in-

terest is the diffracted field when source and receiver are

on opposite sides of the surface, however, when they are on

the same side (herein referred to as backscatter) the result-

ing expressions can be somewhat simplified. Since the purpose

of this development is to compare the results with those of

the normal coordinate approach, the simpler case will be

used. For a complete treatment of this Helmholtz-K irchhof

f

integral equation approach, see Baker and Copson [Ref. 6].
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I f U_ is defined as the incident \vave field at the loca-

tion of the surface, with the surface removed, then the

quantity U within the integral can be approximated by

U = MU (II -26)

where M is the plane wave reflection coefficient. From

equation (11-26) the normal derivative can be written as

3U
= - M ^^

3n 3n
(11-27)

By Equation (11-26), the restriction has been imposed that

the only wave field that can exist on the insonified surface

of the barrier is that due to reflection of the incident

wave field (i.e., there can be no scattered field on the

surface). The consequence of this assumption will be seen

when the diffracted field near the surface is examined.

The additional assumption that is required to make the

integral in (11-25) tractable concerns the reflection co-

efficient M. Kirchhoff's assumption considers it to be

equal to the plane wave reflection coefficient for an infi-

nite plane interface. Here the surface is assumed to be

perfectly rigid and M = 1. Equation (11-25) can now be

written as

"W5 -hi lir("s^

ikR
-) ds

(II -28)

When the integral in Equation (11-28) is taken over the

surface of the half-plane, the U(Q) represents the backseat -

tered wave field. If, on the other hand, the integral in

Equation (11-28) is taken over the portion of the plane not

25





occupied by the surface (generally referred to as the aperture

in optics literature), U(n) would represent the wave field

scattered forward into the shadow region on the side of the

half-plane opposite the source. (Note that this approach

would also require a change of sign due to Equation (11-27).

D. MACDONALD'S FORMULATION

The final theoretical development to be considered here

is that of Macdonald [Ref. 3]. His solution, like Biot-

Tolstoy, is an exact solution for the infinite rigid wedge,

except that Macdonald assumes a continuous wave (cw) source.

A derivation of his solution will not be attempted, instead,

the results of Kawai, Fuj imoto and I tow [Ref. 11) will be

used. The calculations in their paper are based on an ap-

proximate form of Macdonald' s solution given by Bowman and

Senior [Ref. 12] but only the form of the exact solution is

presented below.

From Reference 11 the exact solution can be written in

terms of the velocity potential as

V = V(6 ) + V(-0 )^0

r°° (i) f~ (i)

t

Hi (T^ + kR)
I

Hi (T' + kR)
V = ik TTi— dT + ik i yti— '^'^

J
(T^ + 2kR)-^^^ .

J
(T^ + ZkR)-^/'^

""^R '-^R' (11-29)

where

1/2
T^ = sgn(Tr - 9 -e^j(kRi - kR) (II -30a)
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Tj^. = sgn(T - 9 - 9 )(kRi - kR')^/^ (II-30b)

R = (r^ + r^' + 3^ - 2rr^ cos(9 +9 )) (11 -31a)

R" = (r^ + r^^ +z2 - 2rr cos(9 + 9 ))

1/2
Ri = ((r + r^)2 -H z2j

1/2

1/2

(II -31b)

(II -51c)

k = oj/c

r, r , z, 9, 9 as defined in Figure 1
o ^

and Hi is the first order Hankel function of the first

kind.

The significant feature of this solution, first pointed

out by Macdonald [Ref. 3], is that it consists of the sum of

two velocity potentials, V(9o) and V(-9o). These are iden-

tified in the noise control literature as the source and

the "image of the source in the barrier", respectively. This

important interpretation of the solution will be discussed

in a later section.
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I II . COMPARISON OF SOLUTIONS

A. BIOT-TOLSTOY AND HELMHOLTZ -KI RCHHOFF

Biot-Tolstoy (B-T) and Helmholt z -K irchhoff (H-K) solu-

tions will be compared by choosing a geometry in which both

can be expressed in closed form. The backscatter case is

chosen wherein source and receiver are in the same location.

For this case the time domain solution for the H-K formulation

is derived from Equation (11-28), once again following the

development in Clay and Medwin [Ref. 10] with some minor

changes in notation.

Taking source and receiver to be in the same location

(backscatter only) and assuming an impulse source, U in

Equation (11-28) can be written as
-ikR

Making this substitution and transforming the surface

integral into an integral along the edge [Ref. 10, pg. 323]

Equation 11-28) can be written as follows:

TT

1 r

U(Q) = ^// d [^^Ida
7T

- CO

2

j_ 2 g-2ikR
^

471 / [I ] da

t R2 °°

-7 (111-2)
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here y, a, and R are defined as shown in figure 3. If the

y axis line through } intersects the rigid half-plane, the

integrand of equation (III -2) is represented by

V V

[ ]
-^

[
]'

If not, the integrand becomes

(Case I)

[ ]

(Case II

)

Taking the inverse Fourier transform of (III -2), and denoting

the time domain solution by a small u,

"«) = h
J

^
r2 ,-2ikR r

o°-7r ^^ 00

2

e df da

(III -3)

For Case I this becomes

u(0) =
[

.. ^—] + [-_ ^ - Z_
f J.{(^t-2kr)

J

°°-TT_

2

-dadf]

(III-4)

Where 5 represents the Dirac delta function, a consequence

of the choice of the Green's function of the Helmholtz equa-

tion for the incident wave field.

The first bracket on the right hand side of (III -4)

represents the reflection from one half of an infinite plane.
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Figure 3, Coordinate System for Backscatter from an
Infinite Edge.
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The second bracket contains the specular reflection from the

other half of the plane but reduced by the integral expres-

sion representing the fact that the plate is finite. This

is in the form of an integral along the edge. Following Clay

and Medwin [10], this is called the boundary wave and defined

as follows : u
00 7

c' f f eUoJt-Zk

^'^-rj J
-—--2kr)D(t) = ~ I I dadf

r'-co 7T

^
(III-5)

Case II results in a similar expression but without the

reflection.

In terms of Equation (III -5) the folloiving expressions

are written for the time domain impulse solution:

6(t-^)
u(Q) = [—2V^— - ^ D(t}] (Case I) (III -6)

u(Q) = I^ D(t) ^'^^'^ ") ("I-^^

Taking advantage of the time domain form of the solution

and separating the reflected and diffracted (boundary wave)

components of the wave field results in

(-) Case I

u(Q) = 7 y— D(t) . , ^ jj^ ^'
2 ( + ] Case II

This can be written in terms of the geometry of Figure 3 as

follows (from reference 10, section 10.2.3)
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7T
u(Q) = ^^- { ^^ ^,1 ^^^

=0 t<To (III -8b)

where

2x ^

T - = - — cos 9 = - To cos 9
X c c

°

y
Cto
2

To
2R

c

Finally, through trigonometric substitutions,

^ -r^ sin 29 .

u(Q) = - ^^— {- yjj-
TTC' t(t"-to'} (t'-To")

(III-9)

The diffracted pressure at Q as a function of time is given

bv
p Ct, Q) = - P.R u(0)
^ ^ °

(III-IO)

where P^, is the source pressure spectral density and R^ is

the reference distance. Taking the product P.R = 1 Pascal

meter, the diffracted pressure at Q , as a function of time,

can be written as

p^Ct, Q) = - u(Q)

2 rT^ sin 29

TTC^ tCt^-toMCt^-ToM^''^^

(III-ll)
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The corresponding expression for the Biot-Tolstoy for-

mulation can be obtained from equation (11-22). For the

thin plate (9 = 2tt)
,

nY
d <b c r • u v^"lr' ne n9o • nir 2—- = (rr smh Y) S cos ^^— cos ^^ sm ^^— e^^271^° n

- - -

(III-12)

Working with the sum and noting that 9 =- 9 (source and re-

ceiver coincident)

,

nY • Q • Q nY
a "t— t in9 -in9 -^r-

e, r. 2n9 . niT 2 ^1 ,, . e - e ^ . n-rr 2
S = Ecos^y- smy- e = Ey (1 + = )sin j— e

n n

nTT
Multiplying terms and observing that sin —y is zero for n

even and ±1 for n odd, the sum can be evaluated as

Y _3Y _5Y

S = y(e^-e '' + e "-
)

+

1 ^ -ui -3ui ^ -5ui ^ _^+ j(e ^-e ^+e '- )
+

1 r '^2 -3u2 ^ ^"5u2 >,

+ y(e -e +e
4

1 Y 1 1 Y
= T sech T ^

o- sech ui + q- sech U2 ; Re(y) >0
4 Z O -:-

(111-13)

where

Y
ui = - - If

U2 = T "^ i^
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After considerable manipulation the sum can be written as

Y

J
2 cosh^- cos 9 + cosh Y + cos 29

]^ = ? f Y
(cosh Y + cos 29) coshy

(III -14)

From the geometry of Figure 3 the following can be defined

to = 2y V = £S^

To =
2r, Sr ro = r = CT

The various trigonometric quantities in equation (III -4) can

now be expressed in terms of these as follows:

sin 9 = >: = ^
To To

COS 29 = 1 - 2 sin^e = 1
. t,

To

For r = r equation (II -23b) can be written as

Y = argcosh (V)

where V = (^
1 c^t2*2

1) = (
7 t

- 1)r^ - ^ To2

Using the half angle relations for hyperbolic functions

leads to

:osh \ = (4(V+1)^'^") = "^^T,

Similarly

,

sinh Y = (V^- 1)
1/

= 2K- (t^-To^)
1/2

T -^

And finally, to within a factor of 2,

7.a





(III -15)

Letting P^Rq be unity, as before, results in an expression

for the diffracted pressure wave in the time domain which

can be compared directly to the H-K result.

Biot-Tolstoy

:

2r .tifcos e + 1) - t
2

P^'^BT- - ^ ^ r a. a a.l/Z ^ ^>-
t(t' - to^) (t^ - To )

' (III-16)

Helmholt 2 -K irchhof f

:

2r . r sm
p^^'hk = - in- ^777^ 7TT772 TTTTTT^

*"^
TTC' t(t" - to')Ct" - T

')^''- (III-17)

Equation (III-16) and (III-17) are similar in overall

form but differ in several important ways. When t is much

greater than t , the time dependence of both expression is

determined by the (t^-t ^) ^ factor. (for t approaching

T , the behavior is more complex and is treated in detail

in Appendix A)

.

Since the impulse source has an infinite amplitude, the

leading edge of the diffracted pressure signal (t=T ) must

also be infinite. After this infinite leading edge, the

time behavior can be described as follows:

At = t - To t^ = At^ + ZtTo -To^

For the 'earlv diffracted signal, At<<T and

-1/2

Ct^ - to')^'^^ = (2tTo - 2t^M'^^^ = C2To(t-To))"^/^=(2ToAt)
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-V
The initial diffracted time signal decays as At ^ for both

solutions. Since the amplitude is highest in the early time

portion of the signal, this At ^ dominates the Fourier trans-

form of the signal and the frequency dependance of both

solutions takes the form f ^ which is characteristic of many

diffraction problems. As time increases, however, the H-K

- u

solution approaches the form t while the B-T form approaches
- 3

t

Both solutions have been implemented on the IBM computer

system at NPS. The diffracted time signals for a representa-

tive geometry are shown in Figure 4. Care should be exer-

cised in comparing the magnitude of the first point (t = 0)

since the "infinite" values here were handled differently in

the two solutions. The approach used in the B-T computation

is the numerical integration technique discussed earlier

while the approach for the H-K results are taken directly

from Clay and Medwin [Ref. 10].

The behavior ofthe two solutions as a function of 9 is

also fundamentally different. Examination of the numerators

of Equations (III -16) and (III -17) over the region of 9 from

to 180° (the problem of the thin plate being symmetrical

with respect to 180°), reveals three apparent zero values

for the H-K solution (9, 90°, 180°) vice two for B-T (90°,

180°). Actually, the zero in the numerator at 90° is offset,

in the limit, bv the term (t^-t ^) in the denominator which

goes to infinity at t = t . Physically, this means that
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when source and receiver are directly over the edge, perpen-

dicular to the plate, the solution consists of reflection

only. In order to show the detailed 9 dependence, the time

domain solution has been computed for a variety of geometries

and each time solution transformed to the frequency domain.

These results are plotted versus 9 for several frequencies

in Figures 5 and 6. The amplitudes are in dB with the

reference being twice the range from source to edge. The

differences between the two solutions are significant, with

the only region of agreement being near 90° where both solu-

tions appear to approach the value of -6dB. This is the

expected result and represents one half of the pressure

amplitude that would result from reflection by an infinite

plane. Actually, the H-K formulation produces the correct

result at 9 = 90° while the B-T solution appears to fail in

the immediate vicinity of 90°. As 9 approaches 90°, the

travel time of the reflection t approaches the travel time
o ^^

of the leading edge of the diffracted pulse x .

In this region, equivalent to approaching the shadow

boundary in the forward scattering case, the B-T solution is

approaching the delta function form and the approximation

used to calculate the first time point may not be valid

(see Appendix A). The B-T diffraction solution can only be

used for 9 approaching 90° since at 9 = 90° the separate

reflection solution would apply (Equations 11-18 and 11-19).
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Figure 5« Comparison of B-T and H-K Backscatter Solutions
as a Function of Q at r = 20 cm and a Frequency
of 781 Hz.
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Figure 6. Comparison of B-T and H-K Backscatter Solutions
as a Function of G at r = 20 cm and a Frequency
of 10,100 Hz.
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As the source and receiver are moved away from 90° the

disagreement between the solutions is dramatic. It is in-

tuitively correct that both solutions go to zero as 9

approaches 180°, since the plate is infinitely thin and

would not be "sensed" by a wave from this direction. The

way in which the solutions approach this zero value is

quite different.

The most significant disagreement between the solutions

is seen when source and receiver are close to the plate (9

approaching 0) . The H-K solution approaches zero near the

plate (it is symmetrical, except for sign, about 90° due to

the sin 29 term) while B-T approaches a constant value for

each frequency. This zero in the H-K solution appears as a

consequence of the simplifying assumption stated in Equation

(11-26), where the total pressure field in the plane of the

plate is assumed to be the value of the incoming wave field

evaluated at that location (M = 1 assumed). This "boundary

condition" therefore forces the diffracted pressure field

to be zero anywhere in the plane of the plate. It will be

shown in the experimental portion of this paper that the

B-T solution is correct in this region near the plate.

Although not shown in Figures 5 and 6, both solutions exhibit

the proper sign behavior, i.e., the direct and diffracted

pulses are opposite in sign in the region to 90° but have

the same sign for 90 to 180°.
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The summary, the B-T and H-K solutions simplified for the

case of coincident source and receiver, are dramatically-

different. They approach agreement, in general, only in the

region near, but not at, 9 = 90°.

The final consideration before leaving the topic of

backscatter is an examination of the form of the B-T solution.

Multiplying out the numerator and regrouping terms, Equation

(III -16) can be written as

r^^ 2r r cos 9 ^1 >*v.^

(III-18)

When written in this way, the solution is seen to have an

interesting characteristic. The solution is the sum of two

terms, one which takes into account the overall geometry of

source/receiver and plate (the first term in III -18) and a

term which depends on the distance from the edge of the plate

to the source/receiver. This seems to be a characteristic

of exact solutions of the problem of diffraction by a half-

plane and is directly related to the "image in the barrier"

first mentioned by Macdonald [Ref . 3] . This "image" approach

will be discussed in some detail in the next section.

B. BIOT- TOLSTOY AND MACDONALD

In comparing the B-T and Macdonald half-plane diffraction

solutions, an approach similar to that of the previous sec-

tion will be used. However, the solutions will not be limited

to backscatter but will be kept general and the emphasis will
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be on "forward scatter", i.e., diffraction of sound into the

geometric shadow region (source and receiver on opposite sides

of the half -plane) . The purpose of the comparison is twofold:

to show that computations based on the two "exact" solutions,

one impulse and one CW do, in fact, produce the same results,

and to gain some insight into the use of the "image in the

barrier". As discussed in section II, the Macdonald's

solution form and computations are from Kawai's excellent

paper [Ref . 11}

.

The comparison betxveen B-T and Macdonald computational

results requires some manipulation of geometric quantities.

Kawai's results are converted to the notation of this paper

for consistency, however, this results in only 2-3 points

per frequency spectrum. To alleviate this problem somewhat,

the geometry is selected in such a wav that several different

B-T runs result in basically the same values. Figure 7

shows this geometry and the comparison between B-T and

?lacdonald results. The reference pressure is the free-field

pressure that would be measured at a distance of r + r from

the source with the plate removed. Data referenced in this

manner are labeled "dB re free field at 2r". This combination

of geometry and reference results in B-T theoretical values

which vary only one dB over the range 6 = 330° to 9 = 360°.

Kawai's computations are then converted from his normalized

presentation [Ref. 11, Figure 3] to the format of Figure 6

in 5° increments of 9 between 330° and 360° inclusive and
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plotted in Figure 7 as discrete points. The agreement between

the two solutions is seen to be very good. The scatter in the

Kawai points is almost certainly attributable to the process

of reading these values from the graphs of Ref. 11. Additional

comparisons were made over a wide range of different geometries

using the B-T theoretical results of Bremhorst [Ref. 12] with

agreement similar to that shown in Figure 7 observed in all

cases

.

It should be noted, however, that the comparisons were

not made for the general case of high frequency, large range,

near the shadow boundary (R^ large and N small in the presen-

tation of Kawai)

.

Kawai [Ref. 11] actually presents two sets of computations

of Macdonald's theory; one for the "real" source only (refer-

red to as ATT ) and one for the "real" plus "image" source

(ATT) . This terminology appears to be traceable directly to

Macdonald [Ref. 3]. In his solution he separates a complex

integral [Ref. 5, p. 422] into two integrals, performs the

integrations separately, and recombines the two into an over-

all solution for velocity potential [Ref. 3, p. 425]. Bowman

and Senior's approximate form of this overall solution [Ref.

1]] is given as equations (11-29), (11-30), and (11-31).

The comparison of B-T and Macdonald in Figure 7, is based on

Macdonald's complete solution, ATT. Indeed, if the complete

solution of the half-plane problem is the sum of these two

terms, it is not clear why one would want to consider them
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separately. Yet this is precisely what is done by many authors

in the noise reduction field [cf. Ref. 5].

In order to examine the "real" and "image" terms in Mac-

donald's solution more closely, equations (.11-30) and (11-31)

are repeated here with a slight change in the way and

are expressed;

T^ = sgn('iT - (0 - 0^j)(kRi - kR)^/^ (II -30a)

1^. = sgn (tt - (0 + ))(kRi - kR-)^/^ (II -30b)

R - (r^ + ro' + -J - 2rr cos(0-0 ))^/- (II-31a)

R^ = (r' + ro' + z^ - 2rr cos(0 + ))^/^ (II-31b)0^0
The primed values represent the "image" source terms. The

real source terms are a function of the difference between

and while the "image" terms are a function of their sum^

The significance of this is shown graphically in figure 8.

Figures 8(a) and 8(b) show two different geometries, both of

which have the same value of the quantity — . Since
^ '

(0 — ) is onlv form in which the quantities and enter
^ 0^ ^ ^

real source portion of the solution, it is easily seen that

the real source solution is independent of the orientation

of the plate. It depends only on the locations of source

and receiver relative to the edge. However, the geometries

of Figures 8(a) and 8(b) are different in terms of (0 + 9 )•

It is this term which retains the information concerning the

orientation of the plate (half-plane) relative to source and
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M (d)

Figure 8. Geometry of the Image of the Source in the

Barrier.
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receiver. Since changing the sign of is the same, geome-

trically, as moving the source to the opposite side of the

barrier, one can easily see why the second term of the solu-

tion is associated with the "image of the source in the

barrier". This interpretation is shown in Figures 8(c) and

8(d).

This interpretation is not unique to Macdonald's solution

Recalling equation (II I -18), is was shown that the B-T

solution, for the case of coincident source and receiver,

could be written as the sum of two terms, one which depended

only on the orientation of the edge and one which also con-

sidered the location of the plate. Indeed, the general form

of the B-T solution given by equation (11-24) could be

written as the sum of a term that is a function of 9 — 9

and another that is a function of 9 + 9 . This would be done

in the following way:

p(t) = p(t, 9^) + p(t,-9^)

ttY

^^ (rr sinh Y)"'e ^^^{:3^ + f^ p )

4tt9
' o 9^ -9^

w

sin } [tt±(9 - 9 )]
g = 2m Q

1-2 exp6— ) cos g- rTT±(9-9^)] + exp (-g )

W U' w

sin ^[tt±(9 + 9 )]

g = 2m 2

"^ 1-2 expf^) cos |-[tt±(9 + 9 )] + exp (-^}
W W W
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where each 3 term is actually the sum of two terms, one with

the term in brackets evaluated using the (+) sign and the

other using the (-) sign. There appears to be no advantage

to writing the B-T solution in this way except to show the

geometrical similarity to Macdonald's result. Indeed, Biot

and Tolstoy specifically identify both terms as diffraction

not reflection. True reflections have separately been iden-

tified by B-T as occurring before the diffraction; an inter-

pretation that is direct and obvious in their impulse solu-

tion, but which is obscured in Macdonald's CW solution.

In summary, the B-T and Macdonald exact solutions have

been found to be in very close agreement for all of the cases

examined. Real and image sources have been shown to be a

valid, if not particularly useful, interpretation of both

solutions

.
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rV. EXPERIMENTAL APPROACH

A. GENERAL

The measurements reported herein were made in the NPS

anechoic chamber utilizing pulse techniques. The anechoic

chamber provided the low noise, low reverberation environment

necessary to make precise amplitude measurements at low source

levels. The use of a pulsed source provided a signal that

was both wideband and deterministic and made it possible to

control the effects of extraneous scattering by judicious

choice of the sampling window. Detailed descriptions of the

anechoic chamber and the data acquisition hardware may be

found in Reference 12, and will not be repeated here, except

when necessary to explain the results.

B. DATA ACQUISITION

A block diagram of the overall experimental data acquisi-

tion process is shown in Figure 9. Overall timing of the

acquisition process is controlled by the programmable timing

simulator. A typical sequence is as follows. The waveform

generator is triggered by the timing simulator, sending a

single replica of the preprogrammed pulse to the power ampli-

fier. This pulse is amplified to approximately 50 volts

peak, added to the 150 volt D.C. bias voltage, and applied

to the source (source and receiver characteristics will be
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discussed separately) . The transmitted signal is received by

the \ inch condenser microphone (B+K 4133) and sent to the

signal conditioning equipment. Here the signal is amplified,

filtered to remove low frequency noise and to prevent alias-

ing in the sampling process , further amplified and digitized

(12 bits). Here the timing simulator determines the start

time and duration of the sampling of each pulse. By selecting

the sampling frequency and duration, the number of samples

available to the FFT can be determined. In practice, the

number of samples is set slightly higher than the number to

be transformed since the computer begins with the first

sample and disregards those coming after the specified number

have been acquired. This process is repeated for each pulse

with a pause of approximately 80 milliseconds between pulses.

The computer accumulates the samples by averaging up to

10,000 samples in the time domain and then computes the

Fourier transform of this averaged waveform using a standard

software FFT algorithm. Since the FFT must be taken only

once, the system runs in real-time, which allows a very

large number of pulses to be averaged in a reasonable amount

of time. Since this averaging is coherent, the signal-to-

noise ratio is proportional to N, the number of pulses,

rather than the usual N^. The averaged time waveform or

FTT results are stored on a floppy disk for later use.
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C. SOUND SOURCE

The ideal sound source for these experiments would be a

point source capable of high acoustic output over very short

time durations, with zero output at all other times. These

characteristics can only be approached with a real source.

The obvious choice of a spark source is rejected in order to

avoid finite amplitude effects. Fortunately, the extremely

low noise levels of the anechoic chamber plus coherent

averaging makes accurate measurements possible with a source

of relatively low intensity. The search for a useful source

of small dimensions and narrow time response has been a con-

tinuing one at NPS [cf . Ref. 14]. The source chosen for the

experimental work in this paper were the B § K 5^ inch and 1

inch condenser microphones. The use of these microphones as

sound sources is described in Reference 12 and in a B S K

technical pamphlet [Ref. 15]. In general, the h inch source

covered the higher frequencies (6-40. kHz) while the 1 inch

source was used to provide additional low frequency coverage

(down to approximately 1.5 kHz). The 1 inch source is

actually capable of providing sufficient output over the

entire frequency range but directivity does become signifi-

cant at the higher frequencies.

Typical source waveform and frequency spectra are sho\\rn

in Figures 10 through 13. In Figure 10, the waveform at

the output of the power amplifier is the top curve with the

received waveform shown below. The received waveform (and
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Figure 12, Typical Time Domain Signal, 1" Source.
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associated frequency spectrum) is actually due to a combina-

tion of source and receiver response, however, the relative

contributions of each are not particularly important since

all results are normalized by an appropriate reference mea-

surement using the same source and receiver. The time dura-

tion (or "ringing") of the pulse is important since all of

the desired diffracted pulse must be sampled before the

unwanted arrivals from the other edges of plate. The longer

the acoustic pulse, the larger the specimen must be to

separate the pulses. This ringing is especially important

in measuring backscatter since the low amplitude diffracted

pulse will arrive after the direct/reflected pulse which is

much higher in amplitude. Figure 11 shows the energy

spectral density of acoustic pulse in Figure 10.

Figures 12 and 13 present the same data as Figures 10

and 11, with the same receiver, but using the 1 inch source.

In this case, the received pulse was low pass filtered at

14 kHz in order to enhance the low frequency portion of the

spectrum.

Once an acceptable source and receiver were selected, a

mounting system had to be devised which allowed the micophones

to be positioned accurately yet present a minimum of

additional scattering surface. The approach used is shown

in Figure 14. The diffracting object (in this case a thick

plate) was suspended with nylon fishing line from a frame

attached to the ceiling of the achechoic chamber. Heavier

58





Figure ll+. Typical Anechoic Chamber Measurement ADTiaratus.
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objects were also supported from below. The source and re-

ceiver were each attached to a pair of thin stainless steel

wires mounted firmly to the ceiling frame and resiliently

to the wire mesh floor of the chamber. Source and receiver

were positioned in the horizontal by moving the ceiling and

floor attachments and vertically by moving up or down the

wires. Additional support of the signal cables was provided,

as necessary, with nylon line from the ceiling frame.

D. PLATE CONSIDERATIONS

The plate used in the experiment should be as thin and

yet, as rigid and non-transparent as possible. In addition,

it was desirable to keep the overall weight of the plate low

to facilitate handling and suspension within the anechoic

chamber. Aluminum plate .47 5 cm thick was chosen as a

reasonable compromise. The transmission loss, calculated

using the approach of Reference 12, was greater than 40 dB

at 1.5 kHz, increasing with frequency. This was considered

adequate since no thin plate measurements were planned

where the direct path through the plate was to be substan-

tially less than the diffracted path. For the thick plate

tests the direct path xvould be short but two plates would be

used and the resulting attenuation would certainly be adequate

These estimates were verified by examining the received sig-

nal prior to the arrival of the first diffraction to ensure

there was no significant direct path arrival.
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V. BACK SCATTER EXPERIMENTAL RESULTS

In Figures 5 and 6 it was shown that the B-T and H-K

solutions give dramatically different results for backscatter

near the surface of the rigid half-plane. A simple experi-

ment was performed to determine which solution is correct.

The one inch B+K microphone was used as the source with the

one-half inch B+K microphone used as the receiver. They were

taped together and positioned at a distance of 25 cm from the

edge at various angles as shown in Figure 15. Although the

source and receiver acoustic centers are separated by approxi-

mately 2.5 cm they will be assumed to be coincident.

The transmitted waveform was the half triangle discussed

earlier but the received signal was low pass filtered at

60. kHz vice the 14. kHz shown in Figures 12 and 15, to

achieve a higher frequency response. Each transmitted pulse

actually resulted in three received pulses. The first pulse,

which arrived almost immediately, was the direct source/

receiver path. The second was the reflection from the plate,

while the third was the desired diffraction from the edge.

Unfortunately, the first two pulses were considerably higher

in amplitude than the diffracted pulse. Even with the ability

to exclude the first two pulses in the time domain, the

ringing of the reflected pulse interfered with the analysis

of the diffracted pulse. This limited the geometry to
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Figure 15» Backscatter Experimental Geometry.
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source/receiver locations near the plate, which presented no

particular problem since this was the region of most interest

anyway

.

The results of this experiment are presented in Figure 16,

with the free-field pressure at 2r used as the reference.

For the comparison, the theoretical B-T and H-K results are

shown for angles approximating those of the measurements.

(These theoretical results are the same as those presented

in Figures 5 and 6, now plotted as a function of frequency

for specific angles.) The B-T theoretical results are

plotted as a single line since they vary by less than one

dB over the range of angles presented. I t is clear that the

measured data tend to agree with the results predicted by the

B-T solution rather than going to zero at the surface of the

plate as in the H-K solution. The considerable scatter in

the measured data, especially near 9 kHz at 30 degrees, is

attributable to interference between the diffraction pulse

and the ringing of the reflected pulse.

The measured data not only favor the B-T solution but

also confirm the presence of a scattered wave near the sur-

face. If this scattered wave also exists on the surface,

as predicted by B-T, (there is no reason to think otherwise)

it points out a serious fallacy in the Kirchhoff assumption.

In order to evaluate the integral in Equation 11-25, the

wave field at all points on the surface of integration had

to be known. This was accomplished, through the Kirchhoff
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assumption, by simply taking the wave field on the surface

to be the reflection of the incoming wave. This is equiva-

lent to a boundary condition which forces the diffracted

wave field due to the edge to zero at the surface of the

plate. When the solution is transformed to the time domain

(Equations III-6 and III-7) where the diffracted and re-

flected terms are considered separately, the diffracted

term must go to zero at 9 = 0° in order to satisfy the

imposed boundary condition. That this is clearly not the

case indicates that the H-K formulation should not be used

to estimate the backscattered wave field near the surface

of the plate. For forward scattering, the H-K diffraction

solution would also be expected to go to zero near the olate

Since Bremhorst's data [Ref. 12] show the presence of a

forward scattered wave at the surface, the above argument

can probably be applied to this case as well.
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VI . FINITE PLATE FORWARD SCATTERING EXPERIMENTAL RESULTS

A. GENERAL

When a rigorous diffraction solution such as Biot-Tolstoy

is applied to the problem of diffraction by a real object,

one must be careful to ensure that the original boundary

conditions are applicable. For a finite barrier, two impor-

tant considerations are whether the barrier is large enough

to be considered infinite in extent and thin enough to ignore

thickness (the double edge) . Since the geometry of the half-

plane diffraction problem is such that everything is described

in terms of a cylindrical coordinate system with the origin

at the edge, there is a tendency to think of diffraction as

simply an edge effect. This is the interpretation of the

H-K boundary diffraction wave. This is also the simplist

interpretation of a time domain, impulse solution such as

B-T, where it is easy to visualize an expanding spherical

wavefront intersecting the edge and reradiating acoustic

energy as it "propagates" along the edge. If this were

generally true, one could solve any diffraction problem by

describing the diffracting object in terms of a series of

edges (or, more appropriately, wedges) and adding their con-

tributions. The problem with this approach is that the

original solution assumed the presence of a rigid surface

at some angles 6=0 and 9=9 e:jctending to infinity in the
w
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radial and axial directions and an infinite fluid elsewhere

(see Figure 1). When the physical situation approximates this

condition, the diffraction problem can generally be treated

by considering a source at the edge. For an extreme example

where this is not true, one could consider the difference

between the diffraction due to a rigid half-plane and that

due to a large plate shrunk to become a thin wire at the

location of the edge.

A related problem concerns the treatment of barrier cor-

ners . Here the barrier may be "high" enough to consider the

radial dimension to be infinite but its width (the axial, or

z, dimension) is finite. A roadside billboard or a tall

building could be described this way. If the ground is

totally absorbant (no reflections) Medwin [Ref. 8] treats

the diffraction from this type of a barrier by adding the

impulse response of each of the three edges, truncating the

solution for each edge when the wave reaches the corner, to

obtain the total time domain solution. The assumption

implicit here too is that the boundary conditions of the

theoretical B-T solution are sufficiently well approximated

by the actual barrier.

The third major difference between the theoretical B-T

solution and the actual barrier is the double edge caused by

the finite thickness. The theoretical solution is based on

a rigid, infinitely thin screen whereas the actual barrier

is often approximately rigid but of finite thickness.
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Some researchers have minimized this problem in their mea-

surements by placing a "knife edge" at the top of the barrier

[cf. Kawai, Ref. 11] but this introduces additional sources

of diffraction where the face of the barrier changes angle.

In any case, the real barrier vsfill always have some finite

thickness dimension and it is desirable to be able to calcu-

late or at least understand the nature of its effect on the

diffracted field.

A series of experiments was performed in order to define

these "finite barrier" effects.

B. FORWARD DIFFRACTION AT A CORNER

Bremhorst [Ref. 12] showed excellent agreement over a

wide frequency range between the B- T infinite plate solution

and pulse measurements on a 3/16" thick plate, provided the

pulse is sampled in such a way as to exclude late arriving

diffracted pulses from other edges. However, discrepencies

between measurements and theory of 5-10 dB were observed at

frequencies approaching 50 kHz with source and receiver near

the plate. The purpose of this experiment was to measure

the diffracted pressure field in the vicinity of the corner

of a plate and compare it to the field predicted by B-T

using Medwin's truncation approach. The present geometry

was chosen to ensure that only the edges intersecting at the

corner of interest would contribute to the measurements

(Figure 17)

.
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The source was placed at the coordinates fx , v , z 1r-
s ' s ' s

of 25.5 cm, 8.0 cm, 8.0 cm, respectively. Separate measure-

ments were made using the \ and 1 inch sources to achieve

the widest possible frequency coverage. The receiver was

positioned along the x axis (y = 0,z = 0) at various points

between r = 3 cm and r = 45 cm. This geometry was dictated

by two considerations; source/receiver directivity and co-

herent interference. Source and receiver are both to be

omnidirectional in the theoretical B-T solution. In order

to approximate this adequately, it was considered important

that the source appear omnidirectional when viewed from

points along a significant portion of the edge near the

corner. By orienting the source and receiver in this way

all points on the edge between the corner and the point where

the least time path crosses the edge were within 2 dB of

omnidirectionality up to approximately 30 kHz. The symmetry

of the geometry was chosen to eliminate the frequency domain

interference pattern created by taking the Fourier transform

of a time signal which has two coherent pulses separated by

a time delay. The geometry ensures that the diffracted pulses

from both edges arrive at the same time. This was accom-

plished by moving the receiver slightly to maximize the total

pulse signal at the nearest and farthest ranges and locating

the intermediate measurement points on a straight line

between them.
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These considerations resulted in a geometry which was

somewhat artificial but would allcw a relatively simple analy-

sis of the corner effect. The Fourier transformed diffrac-

ted pulse data for the 1" and h" sources are presented in

Figures 18 and 19 respectively. The free-field pressure at

a range of 28 cm (the distance from source to corner) was

used as a reference pressure. Although the measured data

using both sources show good agreement in the frequency

region where they overlap, their dimensions are large enough

to be considered as an effect on the results and are there-

fore presented separately. The theoretical results from

truncating and adding the B-T solutions for the two

perpendicular edges is also shown. The agreement between the

measurements and this superposition of the truncated

components of two cases of B-T theory is seen to be excellent

across the entire frequency region.

The theoretical and measured results in Figures 18 and

19 also clearly show the effect of moving closer to the

shadow boundary. Because of the geometry shown in Figure 17,

decreasing r also moves the receiver nearer to the shadow

boundary. The theoretical solution as the receiver approaches

the shadow, is shown to approach the delta function form

(Appendix A). The measured data clearly show this result,

as they approach a flat spectrum for small r, with the more

familiar f ^ frequency dependence observed at larger r.
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In Figure 20, these same measurements are presented as

diffracted pressure as a function of range (from the corner)

for selected frequencies, once again compared to the sum of

"truncated" B-T theoretical solutions. Also presented for

comparison are lines of arbitrary level with slopes of -10

log r (cylindrical) and -20 log r (spherical). An apparent

source at the corner would be expected to radiate spherically

while an infinitely long edge would radiate cylindrically

.

Because of the geometry the ranges to the corner and to the

point on the edge where the least time "ray" crosses are

essentially equal so the data may be examined directly for

evidence of a spherical divergence from the corner.

The data, as well as theoretical results, of Figure 20

range from a slope of less than 3 dB per double distance

near the corner, low frequency, to almost 6 dB per double

distance at the highest frequency and largest distance from

the corner. In terms of the dimens ionless parameter kr

(wavenumber times range) , it appears that the corner cannot

be characterized as a simple spherical or cylindrical source

for low values of kr . As kr is increase, the range depen-

dence gradually increases to a value approaching 6 dB per

double distance. Although the results are somewhat incon-

clusive due to limited data, the two line sources, one at

each edge, begin to resemble a virtual point source at

higher values of kr.
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An additional experiment was performed to better define

the difference between diffraction by an edge and diffraction

by a corner. The plate used in this experiment was identical

to that used for the corner (Fig. 17) except that the source

and receiver were set up on a long edge, as shown in Figure

21. As before, the measured data are compared to the B-T

calculated results (for a single infinite edge) in Figures

22 and 23. Unfortunately, the agreement between measurements

and theory is not nearly as good in this case as it was for

the corner. The reason for the significant deviation between

measurement and theory at higher frequencies and small ranges

is not known. Figure 24 presents a direct comparison between

corner and infinite edge results, as a function of range,

along with the appropriate B-T theoretical results.

From this comparison it can be seen that the diffracted

pressure field behind the corner is approximately 6 dB higher

than that behind a half-plane (single edge) for the larger

ranges and higher frequencies. As the receiver moves closer

to the plate, the difference between corner and single-edge

data decreases. Furthermore, there does appear to be a fre-

quency dependence in the difference between the corner and

edge at a given range. To better define this frequency

dependence and to estimate the effect of moving away from

the shadow boundary, a final experiment was performed.

Referring to the geometry of Figure 17, the receiver was

placed distances (r) of 18 and 32 cm from the corner on a
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line perpendicular to the plate (this is the same geometry as

the previous corner measurements). Measurements were also made

at distances of 18 and 52 cm from the corner on a 45° line

extending into the shadow region "behind" the plate as shown

in Figure 25. As before, four identical measurements were

made along a single "infinite" edge for comparison. The

magnitude of the Fourier transformed data from the corner,

divided by the corresponding data from the single edge, are

presented in Figure 26. The upper two curves present data

taken on the perpendicular line while the lower two are taken

on the 45° line (deeper in the shadow) . Also shown with the

upper curves is the theoretical difference between the corner

and edge based on B-T. The general trend indicated by the

upper two curves is one of less than a doubling of pressure

(due to line sources) at the lower frequencies, increasing

to slightly more than double the pressure at the higher

frequencies

.

When the receiver is moved deeper into the shadovvr region,

the character of the ratio plotted in Figure 26 changes

dramatically, as shown by the lower two curves. The monotonic

frequency dependence seen near the shadow boundary has been

replaced by a more complicated dependence. The average value

of the difference appears to be approximately 6 dB , even at

the lower frequencies. The detailed frequency dependence

will be addressed in the next section. The general conclu-

sion to be drawn from Figure 26 is that the farther the
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Figure 25. Experiment Geometry for "Near Shadow Boundary"
"Deep Shadow" Forward Diffraction Comparison
Measurements.
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receiver moves into the shadow region, the more the diffrac-

ted pressure field looks like the coherent addition of two

infinite edges, plus a small frequency dependent variation.

In summary, the measurements presented herein show that

the basic approach of adding impulse diffractions from each

edge in the time domain is valid. Near the corner, the

diffracted pressure is less than a simple addition of two

infinite edge diffractions. In this region, the approach

proposed by Medwin [Ref . 8] , wherein the time domain solu-

tion is "truncated" at the point where the edge wave reaches

the corner, estimates the diffracted pressure very closely

as shown by Figures 18 and 19. The usual treatment of the

corner as a source of spherically diverging diffracted sound

is not evident in the measured or B-T theoretical results,

at least over the lower range of kr presented. At high

values of kr , the results may be approaching spherical

divergence

.

In the high frequency limit, Keller [Ref. 16] predicts

that the corner does produce spherically diverging waves but

that the resulting diffracted field decreases with increasing

frequency much more rapidly than the field produced by an

edge. This characteristic has been used as justification

for disregarding the diffraction at a corner when approaching

practical problems [cf. Ref. 17]. Figure 26 would seem to

indicate that radial distance from the corner and frequency

are not sufficient to determine v/hen to disregard the effects
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of a corner; one must also consider the relationship of the

receiver location to the shadow boundary. The dimensionless

parameter implied in ^ledwin's truncation anproach is kd where

d is the distance from the corner to the point where the

least time "ray" intersects the edge. No substantiation

for this parameter is offered here, however it does take

into account both distance from the corner and nearness to

the shadow boundary.

C. FORWARD DIFFRACTION BY A STRIP

The next experiment was designed to investigate the be-

havior of diffraction from an "infinite" strip of material

whose width was of the order of a wavelength. Two strips

were actually measured, with widths 10 cm and 4 cm. Given

the measurement capability of 1.5 to 40 kHz, these two strips

provided a total range of ka (a represents the width of the

strip) of 1.09 to 72.8. Source and receiver were located on

a perpendicular line through the center of each strip, as

shown in Figure 27a. The source was 14.5 cm from the strip

for all tests while the receiver was located at distances

from the strip of 9.5, 23.2, 39.5, and 59.5 cm in the case

of the 10 cm wide strip and 9.5, 23.2 for the 4 cm strip.

Once again, this geometry was chosen to eliminate the cohe-

rent interference that would result from different path

lengths around each edge. Identical measurements were also

performed on a single "infinite" edge as shown in Figure 27b.
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As long as linear superposition of edge effects holds, the

diffracted pressure at any of the measurement points will be

double for the strip compared to the corresponding plate

(single edge), since there is no truncation involved. With

this in mind, all data are presented as the following ratio:

p _ diffracted pressure behind strip
rat diffracted pressure behind plate

When superposition holds, there will be a simple doubling of

pressure and this ratio will be +6dB at all frequencies.

This ratio, calculated from the measurements on the 10

cm strip and corresponding plate, is presented in Figure 28.

The data are not presented above 30 kHz because of limita-

tions in the determination of the perpendicular to the strip

(i.e. the path lengths around the two edges could not be

equalized well enough to prevent cancellation effects above

this frequency) . The oscillating pattern in the low frequen-

cy portion of the measurements is evident from Figure 28.

If this is interpreted as coherent interference between txvo

signals, two features can be extracted from the data. First,

this interference pattern does not depend on distance from

the strip/plate. Second, by estimating the spacing (in fre-

quency) between adjacent peaks or between adjacent nulls the

apparent path difference can be calculated from the relation

d = X = 'Af in meters. From the data of Figure 28, d is

estimated to be 9 cm, quite close to the strip width of 10
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cm. To verify that strip width is the characteristic dimen-

sion, the experiment was repeated for the 4 cm strip.

The 4 cm strip results are presented in Figure 29. The

strip width from Figure 29 data is estimated to be 4.1 cm,

confirming that the width of the strip is the factor deter-

mining the form of the "interference pattern".

The data measured at 9 . 5 and 23.2 cm are averaged and

plotted as a function of ka for both strips in Figure 30.

For simplicity, the data from both 1 inch and 1/2 inch sources

were averaged in the overlapping region 6-10 kHz. Figure 30

clearly shows that the frequency dependence is directly re-

lated to the strip width a, with a ka spacing of 2-n between

peaks as expected from a simple interference pattern.

The physical explanation offered for this interference

is called secondary diffraction or secondary scattering.

The application of secondary diffraction to the strip is

illustrated in Figure 31. The figure shows only the

interaction at one edge; the mirror image of the process

shown is occurring simultaneously at the other edge. The

solid lines in Figure 31 depict the path of the pulse as it

diffracts over the upper edge, while the dashed lines shoi\[

how the diffraction of the same pulse at the opposite edge

generates signals on both sides of the strip which propagate

across the strip and diffract once again at the upper edge.

The doubly diffracted pulse arrives at the receiver at time

equal to the width (a) divided by the propagation velocity
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(c) later than the initial pulse, resulting in the observed

interference pattern. This late pulse would have two dis-

tinct characteristics, arising from the additional diffrac-

tion, which are immediately observable in the measured data

of Figure 50. First, it will be considerably reduced in

amplitude relative to the earlier (single diffraction)

pulse. This is seen in the data as a weak interference

pattern (the peaks are approximately 6 + 1 dB compared to

6 + 6 dB if the two were of equal amplitude). Second, the

difference in amplitude between singly and doubly diffracted

pulses will be greater w-ith increasing frequency since each

diffraction should increase the frequency dependence and

decrease the strength of the diffraction by approximately

-1/2
f . This causes the decaying amplitude of the interference

pattern with increasing frequency.

A method of calculating the secondary diffraction has

been proposed by Medwin and implemented by Ms. Emily Childs.

The general description of the implementation which follows

2
is due to Childs. When a spherical pulse intersects an

edge, a boundary or edge wave is generated which aDpears

to propagate along the edge. Calculating the B-T time domain

solution in discrete time increments, this edge wave becomes

a series of discrete sources on the edge, each with a

^Personal communication to author from Dr. H. Medwin
Personal communication to author from Ms. E. Childs
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characteristic amplitude and phase. Extending this to a two

edge system (the thin edged strip in this case), these dis-

crete sources on the first edge (now called secondary sources)

each diffract at the second edge and contribute to the dif-

fracted field at the receiver. The proper amplitude is

assigned to each secondary source through a system of vir-

tual receivers located at the second edge. The phase of

each source is taken into account by performing the entire

calculation in the time domain. Figure 32 presents the

results of this theoretical calculation in terms of P ^ for
rat

each strip at a receiver distance of 23.2 cm., compared to

the measured data from Figure 30. Two theoretical curves

are presented for each strip; one which considers the

secondary diffraction on both sides of the strip (double

secondary path) and one which considers secondary diffraction

only on one side (single secondary path). Although the

double secondary path is the intuitively correct

interpretation, the measured data obviously agree with the

single path approach. One possible explanation is that in

using the double path interpretation, each path should be

reduced in amplitude by 1/2 (the diffracted pressures along

the paths on either side of the strip are of equal amplitude

but opposite sign). Keller [Ref. 16] describes a similar

phenomenon for the thin slit in an opaque plane using the

Geometrical Theory of Diffraction.
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At this point it is also appropriate to point out that

the use of secondary diffraction in the preceding explanation

of the interference pattern would not be possible with the

Helmholtz-Kirchhof f approach, since the scattered or dif-

fracted field on the plate would be zero. There would be no

way the pulse could propagate between edges.

It appears that the secondary diffraction explanation can

also be applied to the somewhat more complicated geometry of

the corner. Recalling Figure 26, there was a detailed fre-

quency dependence in the results, especially where the

receiver was deep in the shadow region (the lower curves of

Figure 26). Consider now a corner with one edge horizontal

and one vertical as shown in Figure 17. There will be a pulse

that travels from source to receiver by diffracting over the

horizontal edge. In addition, a pulse also diffracts at the

vertical edge, propagates across the plate near the corner,

and diffracts over the horizontal edge to the receiver.

Unlike the strip, the difference in path length of the two

pulses is a function of distance from the corner, an effect

which can be observed as a difference in the interference

patterns in the two lower curves of Figure 26.

D. FORWARD DIFFR.A,CTIONS BY A THICK BARRIER

The usual theoretical approach to solving the problem

of diffraction by a plate is to consider it to be an
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infinitely thin, rigid half-plane. However, a real barrier

which significantly attenuates the direct path of sound must,

of necessity, have a thickness which is a significant frac-

tion of a wavelength at high frequency. In Reference 12,

Bremhorst presented data which showed the diffracted pressure

at various points in the shadow of a 3/16" thick steel plate.

In particular, Figures 37 through 46 of Reference 12 showed

that the measured diffracted pressure was generally less

than that predicted by B-T, especially near the surface of

the plate (on the shadow side). Bremhorst attributed this

to the finite thickness of the plate. To confirm this

hypothesis, an experiment was performed using two barriers

of different thickness.

The variable thickness was achieved by placing a piece

of aluminum stock of the appropriate thickness between two

3/16" aluminum plates and machining the resulting "edge"

smooth and square. Damping material was placed in the gaD

between the plates to attenuate the direct path. An example

of the thick edge can be seen in the photograph of Figure

14. Thicknesses of 2.2 and 3.5 cm were evaluated utilizing

the geometry shown in Figure 33. Measurements were made at

9 = 300° and 345°, where there was considerable disagreement

between Bremhorst 's measurements and B-T theory. The measured

data are shown in Figure 34, compared to the Bremhorst 's

results and the B-T theorv.
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Figure 33« Thick Barrier Measurement Geometry.
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The data presented in Figure 34 indicate that barrier

thickness is an important parameter in determining the dif-

fracted pressure field, especially when the thickness is on

the order of one v\ravelength (10-15 kHz for the thick barriers

tested). It has been suggested by Medwin that this thick-

ness can be handled by a secondary diffraction calculation

based on the B-T theory, as discussed earlier for the thin

strip, by considering the thickness to be a double edge.

This has not been verified at this time, although the thick-

ness does appear to explain the discrepancy betxv^een Bremhorst's

data and the B-T theory.

E. FORWARD DIFFRACTION BY A BARRIER ON A RIGID BASE

A typical noise control barrier consists of a plane

screen or plate mounted perpendicular to a flat base, as

shown in Figure 3S . The total pressure field at the receiver,

if it is in the shadow region, consists of the source signal

arriving via multiple paths. The usual approach to solving

this problem is to consider that for the top edge there are

four geometrically distinct paths, each involving one

diffraction at the top of the barrier, made up of all possible

combinations of source, receiver, and images of source and

^Personal comm.unication to the author bv Dr. H. Medwin
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receiver in the base , as shown In Figure 35. Using the no-

tation of Figure 35, these paths are denoted as SDR, S'DR,

SDR', S'DR'. It should be pointed out that S' and R' here

are true images as used in optics and acoustics to describe

reflection from a plane surface. The term "image" is also

used by authors in the noise control field [cf. Ref. 5] in

conjunction with the "image of the source in the barrier",

as discussed in section II. This usage is considered here

to be inappropriate and will always be set apart by quotation

marks ("image") to prevent confusion with the more common

term (image)

.

To test the hypothesis that the four paths described

above adequately characterize propagation from source to

receiver in this case, a simple experiment was performed.

A barrier with base was constructed of 3/16 inch aluminum

plate with an overall width of 120cm and barrier height of

25 cm in the basic configuration shown in Figure 35. Source

and receiver (both 1/2" B+K microphones) were positioned so

that each of the four paths would have a different length,

and each path would intersect the axis of the microphone

at approximately the same angle. This would allow at least

a qualitative comparison of the relative strengths of the

various paths. Use of the pulsed source of earlier experi-

ments would allow the identification, in the time domain,

of each path by its characteristic propagation time.
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Similarly, undesirable paths sucli as backscatter from the

edges of the finite base and diffraction around barrier sides

would have propagation times longer than the longest (S'DR')

path of interest and could be eliminated in the time domain.

The results of this experiment are shown in Figure 36,

compared to the calculated arrival times of each of the four

paths. It is clear from these results that the four paths

constructed from the source, receiver and their images in

the base are the dominant paths in this basic barrier confi-

guration. If any other paths exist, they must be of rela-

tively low level or coincide with one or more of the four

basic paths. The path due to the "image of the source in

the barrier" as discussed by Isei [Ref. 5] would coincide

with the SDR and SDR' paths of Figure 36. The relative

amplitude of the various paths also behave as expected, with

the later arrivals Cloriger paths) having lower amplitudes.

The strengths of the various paths were examined by

varying the geometry slightly. By increasing the barrier

height to 42 cm and changing the receiver location (Figure

37) , the separation in time between the paths was increased

engough to allow a separate spectrum analysis of each pulse.

The data of Figure 38, taken with the source/receiver oriented

to insonify/receive both SDR and S'DR paths equally

(appro:x:imately) , show the separation between the two Dulses,

and the general trend in their amplitudes. As expected, the

S'DR pulse appears to be an exact replica of the SDR pulse.
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The actual strength of each path was. measured hy "pointing"

the source in the direction of the path of interest (the re-

ceiver always pointed toward the edge, D) and Fourier trans-

forming only the received pulse corresponding to that path.

This was done for both the SDR and S ' DR paths. The data,

normalized by the free field pressure at the receiver with

the barrier and base removed, (source/receiver pointed at

each other] are presented in Figure 39. Also presented for

comparison are the B-T infinite half-plane theoretical results

for each path. The agreement between theory and measurements

shown in Figure 39 is excellent, indicating that the diffrac-

ted field at the receiver due to SDR and S ' DR paths may be

computed separately, using the geometry of the source and the

image of the source in the base. The total diffracted

pressure at the receiver may then be obtained by adding the

contributions of each path.

It is important to note that the theoretical results in

Figure 39 were obtained from the complete form of the B-T

infinite half-plane solution. The complete theoretical

solution for the diffracted field at R in Figure 35 consists

of the sum of four terms. Isei [Ref. 5] approaches the same

problem by adding the contributions of six different paths,

as shown in Figure 3 of Reference 5. It appears that he

has used the solution due to Macdonald in a form which is

separated into "real" and "image" components as discussed in

section II and is applying these separately to the six paths.
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Figure 39 shows that the correct approach is to apply the

complete solution (e.g. in Macdonald's solution this would

be the sum of the "real" anJ "image" source components) to

each of the four paths to obtain the correct diffracted field.

One need not consider the "image of the source in the barrier"

because it is an integral part of the complete solution.

In addition to the four paths described earlier, it is

possible to have an additional path which propagates from

the source, diffracts at the intersection of the barrier and

base B, then diffracts over the top edge of the barrier to

the receiver, shown in Figure 40 as SBDR. This assumes a

non-perpendicular intersection of barrier and base since

Tolstoy [Ref. 7] shows that there will be no diffraction from

a 90° "interior" corner. The theoretical prediction of this

diffracted pressure at the receiver was approached in the

same way as for the thin strip, discussed earlier.

The geometry shown in Figure 40 was constructed of 3/16"

aluminum, as before, with the source and receiver located as

shown. The SDR and SBDR paths [see Figure 40) can be seen

directly in the time domain in Figure 41. (The relative

amplitudes are only approximate due to source directivity.)

Once again, the source was pointed toward the path of interest

and the received pulse was analyzed separately. The frequency

spectrum of the SBDR pulse, normalized by the direct, free-

field pressure, is shown in Figure 42. Also shown is the
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theoretical result from the secondary diffraction program.

For comparison, the SDR path data and theory from Figure 39

are also presented. (The SDR geometry is identical to the

previous experiment.! The additional diffraction in the

SBDR path is seen in the data as a different frequency depen

dence as well as a lower overall level. When the B-T theory

is used as a basis for secondary diffraction, there is

excellent agreement with the measured data.
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VII. CONCLUSIONS

The exact impulse diffraction solution of Biot and

Tolstoy (B-T) has been compared to the exact CIV diffrac-

tion solution of Macdonald for forward scattering and to

the impulse solution to the Helmholtz equation (H-K) for

backscatter using the Kirchhoff approximation. For back-

scatter from an infinite edge, B-T and H-K have been found

to reduce to a similar although analytically different time

domain form. Comparison of B-T and H-K in the frequency

domain showed substantial disagreement, except for geometries

where the diffracted pulse was close to the reflected pulse

in time, where both solutions approached the same value.

Backscatter near the plate ^^;as found to be grossly under-

estimated by the H-K solution, due to the boundary condition

used by Kirchhoff to simplify the integral. The backscattered

pressure near the surface predicted by B-T was confirmed by

laboratory measurement.

Macdonald and B-T solutions for forward diffraction from

a plate were both found to be in good agreement with the

experiment. Both solutions can be expressed as the sum of

a term containing the source/receiver angles as (6-6^,) and a

term containing (9'^9^). These terms were originally identi-

fied by Macdonald as the "real" and "image" source terms.

The concept of "image of the source in the barrier", as used
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in the noise control literature, is found to be a mis-

interpretation of Macdonald's solution. For a barrier on

a rigid base, the diffracted pressure due to the real source

and the true image source (the image of the source in the

base) were measured separately and both were found to agree

with the complete (both 9-9^ and S'^Qq terms) B-T solution.

The solution of finite barrier problems was found to

be facilitated by the time domain, impulse nature of the B-T

solution. Measurements of forward diffraction near a plate

corner show that Medwin's proposed approach of truncating

the B-T time domain solution to account for the corner accu-

rately predicts the diffracted field. Experimental results

do not agree with simple spherical radiation from the corner

over most of the range of kr between 1 and 150. Limited

data do show a trend toward spherical divergence as kr

approaches 150. Measurements of the forward diffraction by

a thin strip confirm the presence of secondary diffraction,

i.e., waves that first diffract at one edge, propagate across

the surface of the strip, and diffract again at the other

edge. The time domain B-T solution is shown to be a useful

starting point in characterizing this secondary diffraction.

At high frequencies, forward diffraction loss by a plate of

finite thickness is found to be considerably greater than

the theoretical prediction, for an infinitely thin screen.

It appears that this may also be explained by the double

edge creating secondary diffraction with an additional

diffraction contribution at the second edge.
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APPENniX: A

APPROXIMATION OF THE BIOT -TOLSTOY SOLUTION
NEAR THE SHADOW BOUNDARY

Since the B-T solution is a delta function impulse solu-

tion, it is expected that it will approach the delta function

form for limiting cases where the receiver is approaching

the boundary between "illuminated" and '"shadow" regions,

herein referred to as the shadow boundary. As this limit is

approached, the early time portion of the diffracted pulse

will increasingly dominate the solution, creating a difficult

numerical calculation problem. To better understand this

problem, the solution will be approximated for the following

conditions

:

A. 9 = Ztt (thin olate)

B. 9 = 9 +7T + e (receiver in the shadow region, e
° small)

C. t - T ^0 from the positive side (early
° diffracted pulse)

For 9 = 2-n , the complete solution can be written as
w

p(t) = - ^2£ (slfrr sinhY]
'

' [exD (-^/2)
] (A-1)

where

c^t^ - (r^ ^ To' ^ z' )
Y = arg cosh [ ^^^ J * "^

and S is a four term sum written symbolically as
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6 =
3in[l(^^9±9o)]

1 - 2exp(-^Y)cos[y(7T±e±eo) ]
+ expC-Y) (A-3)

For the early diffracted pulse

At = t - T ^0

Medwin [Ref. 8] shows that when — <<1 , the factor containing

sinhY can be approximated as

-1 -1
(rr sinh Y) 3 (2 t c^rr ) 2
^ o 00

(This same result for the specific case of backscatter was

shown in section III.) This factor goes to infinity as At

approaches zero and is generally assumed to be the factor

that determines the time dependence of p(t) under these

circumstances. Time dependence also enters A-1 through the

exp(-Y/2) term but this will be ignored because this function

only varies between 1 and zero and is relatively constant

for Y (and therefore At) approaching zero.

The S term contains both time and geometry dependence in

a rather complex way. The approach here will be to separate

the 3 into four terms and examine each one in the limit as

both Y and z approach zero. (y is directly, although not

linearly, related to At. The exDansion of arg cosh is not

trivial and so the limiting procedure here will be with

respect to Y rather than t.) The 8 term can be written as

(8 +8 +8 + 8 ) with the subscripts referring to the

various combinations as shown in Table (A-1).
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TABLE A-1

TERM COMBINATION OF SUBSTITUTION OF
7T,9,9 e=-9+Tr + p

5 7T + 9 + 27T+29+e
' ++

8^ 7T + 9 - 9 2tt + £+-

6^ 17-9 + 9 -£
-+

? IT - 9 - 9 - (29 + e)
' --
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Using the usual, first order approximations for sine and

cosine of small angles, these terms can be approximated by

the following

sin 9 + e/2 cos 9
o ~ . O

1 + 2 exD(- /2) [cos9 - " / 2 sin 9 ] + exp(-Y)

8 + -

^-.

1 + 2exp(-^/2) + exp(-Y) (A- 4)

e/7

1 - 2exp(-Y/2) + exp(-Y)

sin 9o + ^/2 cos ^p

1 - 2exp(-Y/2) (cos 9 + ^/2sin 9 ) + exp(-Y)

With these first order approximations, the behavior of

each 3 term can be examined at Y =

g I ^ _ sin Qq + ^/2 cos 9o
+ +

Y=0 2(1 + cos 9 - ^/2 sin 9 )

g
I

^ _ sin Qq + ^/2 cos 9o

Y=0 2(1 - cos 9 - ^/2 sin 9 )
'

Y=0 ^

3
I

r (denominator goes to zero)
""

Y =

From this first order analysis, it is seen that three

of the four 3 terms have the potential of dominating the

p(t) solution at small values of Y. These terms will now be

examined to second order in the denominator. (The numerator

contains no difference terms and so the first order
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approximation for small z will be retained for simplicity.)

Considering S_^, the following approximations are used

cos i-^/2) ^ 1 - |-

Y'

exp (-Y) ^ 1 - Y + ^

to obtain

B . -
l£

+ P- - T: + rr—

Neglecting terms higher than second order in the small

quantities Y and z,

g , - 2e

'^
Y^ + £2(l-Y/2)

which approaches a finite value as Y approaches 0,

(A-5)

lim g

Y^O
- +

Using an identical approach yields the following results

for 6 and S

lim 3

Y-^0

sin + ^/z cos 9
CA-6)

+ +

2ri+cos 9 + ^/8 cos 9 - ^/Zsin 9 )^0
lim S

Y->0

sin 9 + e/Zcos 9

2(l-cos 9^ + e'/Scos 9^ " £/2sin 9^) (A-7)

A detailed analysis of the 8^_^ and 6__ terms was not

done, however, they assume the following maximum values at

Y = 0:
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8.. =
I at 9^ ^^ u

;
Y =

6__=-- at 9 =0; Y=0

Since these limiting values are the same as for the 3 term

and will be less for other values of 9 , it is concluded that

the S_^ term will dominate 8 for the early diffracted pulse.

For comparison, the (rr sinh Y) term can also be

approximated for Y approaching zero as

-

1

Y^
(rr sinh Y) = -^(Y + ^ + )'^ s —— (A-S)

o rr ^ 6 . . . Vo rr Y

Comparing Equations A- 8 and \-5 leads to the conclusion that

the rr sinh Y factor will determine the time dependence of^

the early diffracted pulse only when e^ is much greater than

Y^ and Y is much less than 1.

In terms of the basic diffraction problem geometry, this

means that as the receiver approaches the shadow boundary

from inside the shadow (e approaches zero), the time region
_ 1

over which the (rr sinh Y) factor will determine the time

dependence of p(t) becomes very small. This region must be

determined, based on the geometry, before an analytical plus

digital approach such as outlined by Medwin [Ref. 8] can be

employed. This is illustrated in Figures A-1, A-2 whicn show the

behavior of (sinh Y) and 8__^ as a function of Y for two

values of e. Since the B-T solution contains the product of

these terms, one can be assumed to be the factor which deter-

mines the time dependence only when the slope of the other
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approaches zero. Based on this, the (sinh Y) term would

dominate below approximately Y = .1 for e = 18° and below

Y = ,01 for e = 4.2°.
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